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On elliptic curves of conductor 112 and

an open question of Ihara

By

Christopher Rasmussen∗

Abstract

In previous work, joint with Tamagawa, the author investigated a certain class of elliptic

curves with constrained prime power torsion. If an open question of Ihara has an affirmative

answer, then the prime power torsion of such curves must be rational over the fixed field Ω` of

the canonical outer pro-` Galois representation attached to P1
01∞. This is indeed the case for

most examples. In the current work, we consider the remaining examples – elliptic curves E/Q
with good reduction away from ` = 11 which do not have complex multiplication. In these

cases, we demonstrate an explicit computation of subfields of Q(E[`2]) contained in Ω`.

§ 1. Introduction

§ 1.1. Tamagawa’s Conjecture

For any n ≥ 1, let µn denote the n-th roots of unity. Let ` be a prime number.
For any number field k, let k̃` be the maximal pro-` extension of k(µ`) unramified away
from `. Then Tamagawa has conjectured that the set

(1.1) A (k, g) :=
{

([A], `) : dimA = g,Q(A[`∞]) ⊆ k̃`
}
,

is finite for any fixed choice of k and g. Here, all abelian varieties are assumed to be
defined over k, and [A] denotes the k-isomorphism class of A. In [RT08], the author,
jointly with Tamagawa, proved the conjecture in the case g = 1 for k = Q and for k
almost any quadratic extension of Q. The unsettled cases among quadratic extensions
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are exactly the quadratic imaginary extensions of class number one.1 Further, the set
A (Q, 1) was determined explicitly.

Roughly speaking, the finiteness result follows from the following proposition,
proved in [RT08]:

Proposition 1.1. Let E/Q be an elliptic curve. Then ([E], `) ∈ A (Q, 1) if and
only if E has good reduction away from ` and E admits a Q-rational `-isogeny.

Recall that Y0(N) is the open modular curve which parametrizes pairs (E,ψ),
where E is an elliptic curve and ψ is an isogeny on E of degree N . The proposition
implies the finiteness of A (Q, 1) as follows. We have by the Shafarevich Conjecture
that for a fixed `, there exist only finitely many pairs ([E], `) ∈ A (Q, 1). In addition,
the existence of a Q-rational `-isogeny ψ on E implies the existence of a corresponding
point [(E,ψ)] ∈ Y0(`)(Q). However, by Mazur [Maz78], Y0(`)(Q) is non-empty for only
finitely many `. Hence, A (Q, 1) must be finite.

The proof of Proposition 1.1 involves carefully considering the structure of the
action of Galois on the `-torsion of E for the group Gal (Q(E[`∞])/Q(µ`)). Under the
assumption that ([E], `) ∈ A (Q, 1), this is a pro-` group and must in fact stabilize a
nontrivial cyclic subgroup of E[`], whence we conclude the existence of the isogeny. In
fact, one can be more explicit; the Galois representation on `-torsion has the form

(1.2) ρ1,E ∼

(
χi ∗
0 χ1−i

)
,

where χ denotes the `-cyclotomic character modulo `. A more general result is available
for the action on the `-torsion of a higher dimensional abelian variety – for details, see
[RT08].

§ 1.2. Relation to a Question of Ihara

In [AI88], Anderson and Ihara study the canonical outer pro-` Galois representation
attached to the fundamental group of P1

01∞, the projective line with three points deleted.
That representation,

(1.3) ϕ : Gal
(
Q̄/Q

)
→ Out

(
π`1(P1

01∞, x)
)
,

has a kernel whose fixed field we denote Ω`. Let µ`∞ = ∪n≥1µ`n . Then Ω` is an infinite
pro-` extension of Q (µ`∞), known to lie inside Λ`, the maximal pro-` extension of Q(µ`)
unramified away from `. It is unknown whether the fields Ω` and Λ` coincide – Ihara first

1In a forthcoming paper, the author and Tamagawa prove the conjecture in many new cases, in-
cluding for any quadratic field k when g = 1.
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asked this question in the mid 1980’s [Iha86]. In light of this open problem, it is natural
to consider the following question: Given ([E], `) ∈ A (Q, 1), does the containment

(1.4) Q
(
E[`∞]

)
⊆ Ω`

hold? As discussed in [RT08], the containment does hold for almost every curve in
A (Q, 1). Each pair ([E], `) ∈ A (Q, 1) falls into one of the following cases:

(i) ` ≤ 3.

(ii) E has complex multiplication by Q(
√
−`), with ` ≡ 3 (mod 4).

(iii) E has conductor N = 121 and no complex multiplication.

In case (i), there are geometric arguments demonstrating the containment (1.4). The
case ` = 2 is treated completely in [Ras04b]. The case ` = 3 is partially treated in the
author’s Ph. D. thesis [Ras04a], and was completely settled in [PR07].

In case (ii), as Q(
√
−`) ⊆ Q(µ`), we see Q (E[`∞]) /Q (µ`∞) is an abelian extension.

Let Λ0
` be the maximal abelian pro-` extension of Q(µ`∞) unramified away from `, and

let c denote complex conjugation. Then the Z`-module G = Gal
(
Λ0
`/Q(µ`∞)

)
decom-

poses into two eigenspaces relative to the automorphism of G given by conjugation-by-c.
In [RT08, §5], it is shown that Q(E[`∞]) is contained in the fixed field corresponding to
the space with eigenvalue +1, and this field is known to be contained in Ω` when the
Vandiver Conjectures holds at ` [Iha02].

Remark. When ` = 3, both cases (i) and (ii) apply. Further, it may be possible to
extend the argument of case (ii) for E/Q with ` = 2 when E has complex multiplication.
However, case (i) includes eight isomorphism classes of conductor N = 128, none of
which have complex multiplication [BK75, Table 1].

The purpose of the present article is to consider the four Q-isomorphism classes in
case (iii). We demonstrate that for these curves, the field Q(E[112]) always contains
a subfield K, of degree 113 over Q(µ11), which is contained inside Ω11. We compute
explicit field generators for the extension K/Q(µ11).

This containment is in fact already established, because the extension K/Q(µ11)
is abelian and 11 is a regular prime (see [Iha02, pg. 248], for a detailed explanation).
However, the explicit generators for the extension have not previously been computed.
In principle, the arguments presented here can be used to compute larger abelian ex-
tensions of Q(µ11) inside Q(E[11∞]). It is unknown, for example, how the degree of the
maximal abelian extension of Q(µ11) inside Q(E[11n]) grows with n, and this could be
investigated with the techniques of this article.
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§ 1.3. Notation

For the remainder of the article, let ` = 11. Over Q, there are four elliptic curves
E up to Q-isomorphism which have the following properties:

(i) E has conductor N = `2 = 121,

(ii) E has a Q-rational `-isogeny,

(iii) E does not have complex multiplication.

Of course, the first two conditions imply ([E], `) ∈ A (Q, 1). The curves reside in two
isogeny classes, 121a and 121c of Cremona’s tables [Cre08], and they have the following
minimal Weierstrass equations:

Table 1. Non-CM curves with N = 121 admitting an 11-isogeny
121a1 y2 + xy + y = x3 + x2 − 30x− 76
121a2 y2 + xy + y = x3 + x2 − 305x+ 7888
121c1 y2 + xy = x3 + x2 − 2x− 7
121c2 y2 + xy = x3 + x2 − 3632x+ 82757

Between the two curves in each pair, there is an `-isogeny defined over Q, and the
kernel of this isogeny is generated by a point of order ` which is rational over Q(µ`).
Further, over the field Q(

√
−`), there are isomorphisms 121a1 ∼= 121c2, 121a2 ∼= 121c1

(quadratic twists by
√
−`). Hence, the fields generated by `-power torsion are the same

for 121a1, 121c2 or 121a2, 121c1.
In the following, we let E denote an elliptic curve, assumed to be one of the four

curves above. We let E′ denote the elliptic curve which is `-isogenous to E over Q,
and let P1 be a Q(µ`)-rational point generating the kernel of the `-isogeny E → E′.
We further choose points Pn, Qn ∈ E[`n] so that for every n ≥ 1, [`]Pn+1 = Pn,
[`]Qn+1 = Qn, and {Pn, Qn} is a basis for E[`n].

For any n ≥ 1, define Gn := Gal
(
Q(E[`n])/Q(µ`)

)
, and define

(1.5) G̃n :=

{(
a b

c d

)
∈ GL2(Z/`nZ) : a, d ≡ 1, c ≡ 0 (mod `)

}
.

We also define G∞ := Gal
(
Q(E[`∞])/Q(µ`)

)
, and

(1.6) G̃∞ :=

{(
a b

c d

)
∈ GL2(Z`) : a, d ≡ 1, c ≡ 0 (mod `)

}
.

The natural Galois action on torsion points of E gives representations ρn,E : GQ → G̃n

and ρE : GQ → G̃∞, which are inclusions when restricted to Gn and G∞, respectively.
We will always write these representations with respect to the bases {Pn, Qn}.
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For any integers n > m ≥ 1, the following diagram commutes by definition:

(1.7) Gn
(mod `m) // //

ρn,E

��

Gm

ρm,E

��
G̃n (mod `m)

// // G̃m

Of course, we also have ρn,E ≡ ρE (mod `n).

§ 2. Kummer extensions

§ 2.1. Kummer extensions from torsion

We consider the ` torsion of E. As G1
∼= Z/`Z, the field Q(E[`]) is a Kummer ex-

tension of Q(µ`). Of course, finding a primitive element for the extension Q(E[`])/Q(µ`)
is quite simple. Let Φ(x) denote the `-division polynomial for E. We need only choose
a root β of Φ(x) such that Φ(x) splits completely over Q(µ`, β). Unfortunately, β is
not a Kummer element – that is, β` 6∈ Q(µ`). In this section, we construct a Kummer
element for this extension.

For ease of exposition, we now let E be the curve 121c1 specifically, but we work
with the Weierstrass model

(2.1) y2 = x3 − 3267x− 280962.

The computations are no different in the other case. Let ζ := exp(2πi/`) ∈ µ`. Over
Q, Φ(x) = I(x)J(x), where I(x) is a degree 5 polynomial which splits completely
over Q(µ`). The roots of I(x) correspond to the x-coordinates of points inside 〈P1〉.
Explicitly, we have:

I(x) = x5 + 429x4 + 10890x3 − 2829222x2 − 56169531x+ 1480352841,

Given I(x) and the Weierstrass equation for E, we compute the coordinates for a gen-
erator of 〈P1〉:

x(P1) = −21 + 36(ζ2 + 2ζ3 + 2ζ4 + 4ζ5 + 4ζ6 + 2ζ7 + 2ζ8 + ζ9),

y(P1) = −108(5 + 10ζ + 15ζ2 + 20ζ3 + 14ζ4 + 8ζ5 + 2ζ6 − 4ζ7 − 10ζ8 − 5ζ9).

Of course, we can easily compute the coordinates of [k]P1 for 0 ≤ k < ` by use of the
formulas for the group law on E. Let Q1 ∈ E[`] be such that x(Q1) = β. Over Q(µ`),
J(x) splits into five factors of degree 11, J1(x), . . . , J5(x). Then β is a root of one of
these polynomials, say J1(x).
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We have already seen that with respect to the basis {P1, Q1}, G1 is isomorphic to
the group of unit upper triangular matrices. Hence, there exists a generator σ of G1

such that

(2.2) ρ1,E(σ) =

(
1 1
0 1

)
.

So σk fixes P1 and Qσ
k

1 = [k]P1 +Q1. The conjugates of β are

βσ
k

= (x(Q1))σ
k

= x(Qσ
k

1 ) = x ([k]P1 +Q1) , 0 ≤ k ≤ 10.

Knowing this, we construct a Kummer element for Q(E[`])/Q(µ`) in the classic way.
Let

(2.3) κ :=
`−1∑
k=0

ζ−(k+1)βσ
k

.

Then

(2.4) κσ =
`−1∑
k=0

ζ−(k+1)βσ
k+1

= ζκ,

and so either κ generates Q(E[`]) and gives a Kummer element, or κ = 0. We can
manage the computation (2.3) quite nicely in Maple, and determine κ in terms of β.
More importantly, we can recover κ independent of β. We compute κ` and use the
relation for β` coming from J1(x), the minimal polynomial of β, to eliminate large
powers of β. Since κ` ∈ Q(µ`), this expresses κ` independent of β. Carrying out this
computation, we find

κ` = C`1
(
−1022575 + 1877112(ζ2 + ζ9) + 2417629(ζ3 + ζ8)

+ 983639(ζ4 + ζ7)− 750141(ζ5 + ζ6)
)
,

(2.5)

where C1 ∈ Q. Repeating this computation when E is 121a1 or 121c2 gives a Kummer
element

κ` = C`2
(
24904476854 + 7713235886(ζ2 + ζ9) + 22514944732(ζ3 + ζ8)

− 4585163186(ζ4 + ζ7) + 16106026167(ζ5 + ζ6)
)
,

(2.6)

where again C2 ∈ Q.

§ 2.2. Some Kummer extensions inside Ω`

We would like to demonstrate that Q(ζ, κ) ⊆ Ω`. Given two Kummer elements
κ, η over the same ground field, recall that they generate the same Kummer extension
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if and only if the quotient κ`s/η` gives an `-th power inside the ground field for some
s, 0 < s < `. Unfortunately, there are a very large number of Kummer extensions of
Q(µ`) inside Ω`. As explained in [Iha02], Ω` contains all elements of the form

(2.7) (1− ζ1/`m)1/`
n

, m, n ≥ 1.

Hence, Ω` contains the following large class of elements

(2.8) η =
(
ζb ·

5∏
i=1

(1− ζi)ai
)1/`

, 0 ≤ b ≤ `− 1, 0 ≤ ai < `− 1,

and each of these η ∈ Ω` generates a Kummer extension of Q(µ`). Clearly, an exhaustive
search comparing κ to each of these η is rather impractical! Fortunately, we can reduce
greatly the number of candidates with the following observation: Q(E[`]) is Galois not
just over Q(µ`), but also over Q. Very few of the above η have the property that the
extension Q(ζ, η)/Q is Galois.

Indeed, set L = Q(ζ, η). Let ∆ = Gal (Q(µ`)/Q), and let δ ∈ ∆ be the generator
for which ζδ = ζ2. Choose γ ∈ Gal (L/Q) such that γ|Q(µ`)

= δ. Since L/Q is Galois,
we know ηγ ∈ L. By Kummer theory, there must exist some s, 0 < s < `, such that

(2.9)
(ηγ)`

η`s

is an `-th power in Q(µ`). Of course,

(ηγ)` = γ(η`) = δ(η`) = ζ2b ·
5∏
i=1

(1− ζ2i)ai

= ζ2b(1− ζ2)a1(1− ζ4)a2(−ζ6)a3(1− ζ5)a3

× (−ζ8)a3(1− ζ3)a4(−ζ10)a5(1− ζ)a5

= ζ2b+6a3+8a4+10a5(1− ζ)a5(1− ζ2)a1(1− ζ3)a4(1− ζ4)a2(1− ζ5)a3 .

(2.10)

Hence, the quotient (2.9) is an `-th power in Q(µ`) if and only if all the following
conditions hold modulo `:

(2.11) a1 ≡ sa2, a2 ≡ sa4, a3 ≡ sa5, a4 ≡ sa3, a5 ≡ sa1,

(2.12) b ≡ (3s2 + 5s+ 1)a5

2− s
.

By (2.11), if any ai vanishes modulo `, then every ai does. But in this case, η is a
primitive `2-th root of unity, which is a contradiction (we want η to generate Q(E[`]),
which does not contain µ`2). So no ai vanishes, and from (2.11) we conclude

(2.13) s5 − 1 ≡ 0,
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or s ∈ {1, 3, 4, 5, 9}. We see the values b, ai are all determined by the choice of s and a5,
leaving only 50 possible values for η of the form (2.8). Using Maple, we can compute
which of the expressions (η`s/κ`) give an `-th power inside Q(µ`).

Proposition 2.1. For each curve E in Table 1, Q(E[`]) ⊆ Ω`, and is given
explicitly as Q(µ`)(η), where η` is given in Table 2.

Remark. In fact, we could have restricted the possible η even further before
starting a computational search, by determining the structure of the action of ∆ on
Gal (Q(ζ, η)/Q(µ`)). This action is given by a certain power χj of the `-cyclotomic
character, and can be computed from the data of ai, b. But this power j is also de-
termined by the action of G1 on the `-torsion of E, and so even fewer η are viable
candidates. This reduction is not really necessary at the level of `-torsion, but could be
crucial in a future attempt to analyze the Kummer extensions of Q(µ`n) lying inside
both Ω` and Q(E[`n+1]), for n > 1.

Table 2. Generator for Q(E[`]) over Q(µ`)
E η`

121a1
ζ8(1− ζ)2(1− ζ2)−4(1− ζ3)6(1− ζ4)−3(1− ζ5)−1

121c2
121a2

ζ10(1− ζ)−4(1− ζ2)6(1− ζ)−3(1− ζ4)2(1− ζ5)−1

121c1

§ 3. Computation of Gab2

In light of Proposition 2.1, one might hope to find larger abelian extensions of Q(µ`)
inside Ω` ∩Q(E[`2]). In this section we prove Q(E[`2]) ∩ Λ0

` is a degree `3 extension of
Q(µ`), but that it essentially contains “nothing new” – being generated by µ`2 and the
`-torsion of E and E′.

Proposition 3.1. The group G2 is isomorphic to G̃2, and Gab2 ∼= (Z/`Z)3.

The key step is to construct a morphism Gab2 � G̃ab2 , whose surjectivity is proven
by considering the images of Frobenius elements. One then lifts this surjection to an
isomorphism G2

∼−→ G̃2 to prove the proposition.
Define π̃ : G̃2 → (Z/`Z)3 by

(3.1) π̃ : X 7→ (b, c, a+ d− bc), X =

(
1 + `a b+ `b′

`c 1 + `d

)
,
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for any a, b, b′, c, d ∈ Z/`Z. We want to show that π := π̃ ◦ ρ2,E is a surjection. We
proceed by considering each component of π̃ = π̃1 × π̃2 × π̃3 separately, and giving
criteria for πi := π̃i ◦ ρ2,E to vanish at a Frobenius element fp, defined below.

§ 3.1. Frobenius elements

For r ≥ 1, let ζ denote a primitive `r-th root of unity. Let L/Q be an extension,
unramified away from `, which contains Q(µ`). Fix a prime p 6= `, and let P be a prime
in OL, the ring of integers of L, dividing p. We let Frp denote the automorphism x 7→ xp

inside the Galois group of the residue field extension. There is a natural isomorphism
between this Galois group and the decomposition group of P inside Gal (L/Q). We let
fp denote the image of Frp under this isomorphism.

Lemma 3.2. Let p be a prime congruent to 1 modulo `, and suppose Q(µ`r ) ⊆ L.
Then fp fixes Q(µ`r ) if and only if p ≡ 1 (mod `r).

Proof. This is quickly deducible from standard facts about cyclotomic fields. See,
for example, [Was97, Ch. 2]. However, we give a proof here for the convenience of the
reader.

Suppose that p ≡ 1 (mod `r). We have fp(ζ) = ζj for some 0 ≤ j < `r, and by
the definition of Frobenius, we have ζj − ζp = ζj − ζ ∈ P. Hence, (1 − ζj−1) ∈ P,
which divides p. Of course, if (1 − ζj−1) 6= 0, then there exists β ∈ OL such that
` = β(1−ζj−1), and so ` ∈ P, which is nonsense. Hence, (1−ζj−1) = 0, or equivalently
ζj = ζ. So fp fixes Q(µ`r ).

Conversely, if fp fixes Q(µ`r ), then fp(ζ) = ζ, and so 1 − ζp−1 ∈ P. As in the
preceding paragraph, this element must therefore be zero. This is only possible if
p ≡ 1 (mod `r).

§ 3.2. The first component of π̃

Let π̃1 : G̃2 → Z/`Z be defined by sending the matrix X in (3.1) to b, and let
π1 = π̃1 ◦ ρ2,E . Consider Φ(x), the `-division polynomial for E. As Φ(x) does not
split completely over Q(µ`), G1 is nontrivial and ρ1,E is surjective. It follows that the
composition

(3.2) G2
// // G1

ρ1,E // G̃1
// Z/`Z,

where the right-hand arrow sends a matrix to its upper right entry, must be surjective.
Notice that the composition of the first two arrows is also given by ρ2,E (mod `), and so
(3.2) is just a different expression for π1.

Suppose that p ≡ 1 (mod `) is a prime. Set L = Q(E[`2]), choose any prime P

dividing p in OL, and let fp ∈ Gal(L/Q) be defined as before. By Lemma 3.2, fp fixes
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Q(µ`), and so we may view fp ∈ G2. Let Ẽ be the reduction of E at P, and let Frp
denote the Frobenius automorphism x 7→ xp of the residue field OL/P.

Lemma 3.3. Suppose that p ≡ 1 (mod `). Then π1(fp) = 0 if and only if Φ
splits completely over Fp.

Proof. Recalling some standard facts about the reduction of elliptic curves [Sil86,
VIII.7.1], we know that the coordinates of any point T ∈ E[`] are P-integral. Further,
the reduction map E → Ẽ is injective on E[`] because p is a prime of good reduction and
p 6= ` [Sil86, VII.3.1]. Finally, we recall that the reduction map (which we denote by an
overline) and the action of Frobenius commute, so that for any point T , fp(T ) = Frp(T̄ ).
Because Frp generates the Galois group of the residue field extension, we have the
following chain of equivalent statements::

π1(fp) = 0 ⇔ ρ2,E(fp) ≡

(
1 0
0 1

)
(mod `)

⇔ fp(T ) = T for every T ∈ E[`]

⇔ Frp(T̄ ) = T̄ for every T̄ ∈ Ẽ[`]

⇔ Ẽ[`] ⊆ Ẽ(Fp)

The last statement holds if and only if Φ splits completely over Fp.

§ 3.3. The second component of π̃

Let π̃2 : G̃2 → Z/`Z be defined by sending the matrix X in (3.1) to c, and let
π2 = π̃2 ◦ ρ2,E . Then the isogenous curve E′ := E/〈P1〉 has its `n-torsion generated by
the basis {Pn+1 + 〈P1〉, Qn+ 〈P1〉}. We denote by G′n the group Gal (Q(E′[`n])/Q(µ`)),
and denote by ρn,E′ the representations into G̃n, with respect to these bases. We now
consider the composition

(3.3) G2
// // G′1

ρ1,E′ // G̃1
// Z/`Z,

where this time the right-hand arrow sends a matrix to its lower left entry. Suppose
σ ∈ G2, and ρ2,E(σ) is given by the matrix X in (3.1). Since

(P2 + 〈P1〉)σ = (1 + a`)P2 + c`Q2 + 〈P1〉 = P2 + cQ1 + 〈P1〉,
(Q1 + 〈P1〉)σ = (`Q2 + 〈P1〉)σ

= `((b+ `b′)P2 +Q2) + 〈P1〉 = Q1 + 〈P1〉,

(3.4)
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we have

(3.5) ρ1,E′(σ) =

(
1 0
c 1

)
,

and so 3.3 gives precisely π2. As before, Φ′(x), the `-division polynomial for E′, does
not split completely over Q(µ`). Hence ρ1,E′ and π2 are surjective. We obtain the
following result, whose proof is essentially identical to the proof of Lemma 3.3.

Lemma 3.4. Suppose that p ≡ 1 (mod `). Then π2(fp) = 0 if and only if Φ′

splits completely over Fp.

§ 3.4. The third component of π̃

Define π̃3 : G̃2 → Z/`Z as the composition

(3.6) G̃2
det // 1 + `(Z/`2Z)

(1+x`)7→x // Z/`Z .

Explicitly, it sends the matrix X in (3.1) to (a+ d− bc). Define π3 := π̃3 ◦ ρ2,E . Then
det(ρ2,E) ≡ χ (mod `2), where χ is the `-cyclotomic character. Hence, by Lemma 3.2,
π3(fp) = 0 if and only if p ≡ 1 (mod `2).

§ 3.5. Proof of Proposition 3.1

It is possible to prove G2
∼= G̃2 by establishing an isomorphism between G∞ and

G̃∞ using a Frattini-type argument. However, here we present a direct, if elementary,
proof.

Proof of Proposition 3.1. In view of the preceding Lemmas, it is a simple matter to
search over the primes p ≡ 1 (mod `) to find primes p for which Φ or Φ′ splits completely
over Fp. We catalog the behavior for three such primes, and the consequences for π(fp),
in the following table. (Note, we assume E = 121a2 or 121c1. For the other choices of
E, simply interchange the columns for Φ and Φ′.)

Table 3. Behavior of π(fp) for E ∈ {121a2, 121c1}
Φ splits completely Φ′ splits completely p ≡ 1

p over Fp over Fp (mod `2) π(fp)

3631 X — X (0, ∗, 0)
10429 X X — (0, 0, ∗)
13553 — X X (∗, 0, 0)

In particular, the entries marked ∗ must be non-zero. Hence, π is a surjection,
and #Gab2 ≥ `3. It is easy to verify that #[G̃2, G̃2] = `2, so #G̃ab2 = `3. Via the
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inclusion ρ2,E , we view G2 as a matrix subgroup of G̃2. Certainly #[G2, G2] ≤ `2. Both
claims of the proposition follow if #[G2, G2] = `2.

As π is a surjection, we know for any (x, y, z) ∈ (Z/`Z)3 there exists at least one
element σi ∈ G2 such that π(σi) = (x, y, z). That element σi has the form

(3.7) σi =

(
1 + ai` x+ b′i`

y` 1 + (xy + z − ai)`

)
, ai, b

′
i ∈ Z/`Z.

Select σ1, σ2 ∈ G2 to be inverse images of (1, 0, 0) and (0, 1, 0), respectively. Then we
have

[σ1, σ2]2 =

(
1 + 2` −(2 + 4a2)`

0 1− 2`

)
,

[σ2
1 , σ2] =

(
1 + 2` −(4 + 4a2)`

0 1− 2`

)
.

(3.8)

These two elements of [G2, G2] clearly generate distinct subgroups of order `. Hence,
#[G2, G2] > ` and the proposition follows.

Let K = Q(E[`2]) ∩ Λ0
` , so that Gab2 = Gal (K/Q(µ`)). We have

Corollary 3.5. For any E in Table 1, the field K is contained in Ω`, and is the
compositum of Q(E[`]), Q(E′[`]) and Q(µ`2).

It is still open even whether the `2 torsion of these elliptic curves is rational over
Ω`. This illustrates our general understanding of Ω` – its structure is quite mysterious
beyond the subextension which is abelian over Q(µ`∞).
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